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Abstract
Among painful disorders, migraine is distinguishable by its chronic pathology and episodic clinical manifestation. Only a 
small percentage of patients with migraine progress to a chronic form of migraine. Both peripheral and central portions of the 
trigeminal system are involved in the pathophysiology of migraine pain, as they are involved in the processes of peripheral and 
central sensitization, alongside various subcortical and cortical brain structures. This review focuses on clinical, neurophysi-
ological, and neuroimaging data underscoring cortical pain processing in migraine. Data obtained from quantitative sensory 
testings are inconclusive and support the involvement of the peripheral portion of the trigeminovascular system as indirect 
evidence of peripheral sensitization, solely during the headache phase. The assessment of subjective pain intensity in response 
to several painful modalities has not been conclusive for the clear state of central sensitization in between migraine attacks 
but for the subclinical allodynia state that defines the boundary between behavioural responses and an irritable nervous state. 
Modulation of the brainstem and midbrain pain pathways, in conjunction with the thalamic and thalamocortical pathways, 
may be critical for the initiation and maintenance of migraine attacks. Several studies using different neuroimaging techniques 
have demonstrated that brains experiencing migraine undergo plastic changes in both microstructure and macrostructure and 
in the functioning of cortical networks, which may manifest early in the life of a patient with migraine. Further studies are 
required to understand how specific these results are to migraine relative to other painful disorders.

Keywords Pain · Migraine · Chronic · Neurophysiology · Neuroimaging · Quantitative sensory testing · Trigeminal system · 
Brainstem · Thalamus · Cortex

Introduction

According to the Global Burden of Disease Study, migraine 
is one of the four major leading causes of disability world-
wide (Feigin et al. 2019). Among the various painful pathol-
ogies, migraine is distinguishable due to its chronic pathol-
ogy and episodic manifestation. Annually, only 1–3% of the 
migraine population evolves from an episodic to a chronic 
form of this disease (Scher et al. 2003), i.e., headaches occur 
on at least 15 days a month for at least 3 months, with at least 
8 headache days with evident migraine characteristics. The 
initially high headache frequency and the excessive use of 

acute medication are major risk factors of migraine chronic-
ity (Katsarava et al. 2004).

Several advances have been made in recent years in 
understanding the pathogenesis of migraine. Migraine 
is familial, suggesting a genetic vulnerability termed the 
“migraine threshold”, which is capable of determining brain 
characteristics that distinguish the brain of the migraineur 
from that of a non-migraineur (Sándor et al. 2002). Over 
the years, non-invasive neurophysiological techniques have 
revealed that the migraine brain is characterized by altered 
cortical responsiveness, malfunctioning of the mecha-
nisms of pain control, and altered cortical pain processing 
(Coppola et al. 2013a). These functional properties of the 
brain are observed, especially during the pain-free phase, 
and are the underlying properties that, in the presence of 
exogenous or endogenous factors, can lead to the trigger-
ing of a migraine attack (de Tommaso et al. 2014). Due to 
advances in structural and functional neuroimaging tech-
niques enabling the investigation of brain anatomy and func-
tion, substantial progress has been made in understanding 
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pain processing in patients who are affected by migraine 
(Sprenger and Borsook 2012).

This review focuses on clinical, neurophysiological, and 
neuroimaging data that provide information on cortical pain 
processing in migraine under the scope of providing a deeper 
understanding of how migraine affects the brain.

Peripheral sensitization in migraine

For migraine pain to occur, the involvement of the periph-
eral portion of trigeminal nociceptors in the dural and pial 
arteries and arterioles is necessary. This process involves 
the initiation of localized neuronal inflammation, involving 
leukocyte recruitment and mast cell degranulation. Factors 
that trigger this involvement have not been elucidated. This 
process can be apparent, in migraine with aura, or silent, in 
migraine without aura. Cortical spreading depression (CSD), 
the most likely culprit underscoring migraine aura, involves 
a wave of initial excitation and late depression of electro-
cortical activity that has been shown to open pannexin-1 
megachannels in neurons exposed to stress (Karatas et al. 
2013) and to activate the trigeminal system in animal mod-
els favouring release of vasoactive neuropeptides, like calci-
tonin gene-related peptide (CGRP), that promote neurogenic 
inflammation (Bolay et al. 2002). Nevertheless, whether and 
how CSD relates to the induction of migraine headaches 
remain a matter of debate. Although progression and pace 
of aura symptoms in the visual field and cortical retinotopic 
map suggest this, direct evidence that CSD causes aura 
symptoms in patients is scarce (Hadjikhani et al. 2001). For 
others, the involvement of the trigeminal nociceptive system 
is determined by the brainstem, the site of monoaminergic 
(adrenergic, cholinergic, serotonergic, and histaminergic) 
systems (Edvinsson et al. 1983; Bonvento et al. 1990) which 
along with the periaqueductal grey (PAG) inhibit pain in a 
descending manner. The brainstem also directly or indirectly 
regulates the degree of cortical activation via the thalamus 
(Mesulam 1990) and modulates neurovascular coupling, thus 
regulating blood flow and vascular permeability (Goadsby 
et al. 1982). This is important for CSD initiation and periph-
eral sensitization, which, in turn, may initiate a migraine 
attack (Goadsby and Akerman 2012). Some researchers have 
argued that when meningeal nociceptive receptors are sen-
sitized, they become responsive to imperceptible rhythmic 
fluctuations in intracranial pressure (pulsation) produced by 
normal arterial pulsation. This mechanical hypersensitivity 
may mediate the pulsating quality of headaches and associ-
ated worsening during coughing, bending, or other physical 
activities that increase intracranial pressure (Burstein et al. 
2004). Interestingly, in a neurophysiological study in a single 
chronic migraineur experiencing throbbing sensations even 
after headache resolution, researchers demonstrated a high 

association between the overall amount of alpha range EEG 
activity/power and its modulation by throbbing intensity and 
rhythm, thus proving a potential central neural signature of 
pain quality (Mo et al. 2013). Despite the latter, several 
studies have attempted to verify direct or indirect signs of 
peripheral sensitization in migraineurs.

Various studies have used quantitative sensory testing 
to assess pain perception in various phases of the migraine 
cycle. Comparing the ictal to the interictal phase in epi-
sodic and chronic migraine patients, it has been observed 
that the pain threshold (PT) to mechanical and cold stimuli 
was reduced ipsilateral to the headache side (forehead) at 
the very beginning of an attack, spreading contralaterally 
and even extracephalically (forearm) during the delayed 
headache phase (Burstein et al. 2000a, b). Recently, with 
the scope of identifying signs of localized neural inflamma-
tion, researchers have applied ultrasmall superparamagnetic 
particles of iron oxide-enhanced 3 T MRI—a macrophage 
biomarker—to investigate the walls of cerebral arteries, dura 
mater, and regions of interest within the brain parenchyma of 
migraineurs during provoked attacks, revealing the absence 
of signs of localized macrophage-mediated neural inflam-
mation. In animal models, this activates the perivascular 
trigeminal nociceptors that densely innervate the dural and 
cerebral arteries (Khan et al. 2019). These findings refute 
the idea that sterile inflammation of the walls of cerebral 
arteries and brain parenchyma plays a role in migraine 
pathophysiology.

Decreased cold PT over the forehead during the head-
ache phase was confirmed by another independent group, 
and it was unrelated to the aura and headache side (Sand 
et al. 2008a; Uglem et al. 2017a). Contradictory results were 
obtained with regards to the preictal phase of migraines, 
when both lower—compared to the interictal phase—(Sand 
et al. 2008a) and normal (Engstrøm et al. 2013; Uglem et al. 
2017a) PT values were reported. However, the authors do 
not rule out the possibility that PTs may decrease signifi-
cantly when patients are tested close to an attack (Schwedt 
et al. 2015; Uglem et al. 2017a).

Most studies have been performed during the intercriti-
cal period of migraines. Their findings are contradictory 
and inconclusive, as both lower (Schoenen et al. 1991; San-
drini et al. 2002; Fernández-de-las-Peñas et al. 2008, 2009, 
2010; Schwedt et al. 2011, 2015; Zappaterra et al. 2011; 
Grossi et al. 2011; Engstrøm et al. 2013; Florencio et al. 
2015; Palacios-Ceña et al. 2016)—mostly to mechanical or 
thermal painful stimuli—and normal (Bovim 1992; Göbel 
et al. 1992; Bishop et al. 2001; Weissman-Fogel 2003; Kat-
sarava et al. 2003; Ayzenberg et al. 2006; Buchgreitz et al. 
2006, 2008; Coppola et al. 2007; Sand et al. 2008a; Gierse-
Plogmeier et al. 2009; Perrotta et al. 2010; Teepker et al. 
2011; Beese et al. 2015; de Tommaso et al. 2015) PT values 
between migraineurs and healthy controls were observed. 
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The results obtained by studying adolescents are also con-
tradictory, since either a significant reduction (Zohsel et al. 
2006; Ferracini et al. 2014; de Tommaso et al. 2016) or no 
difference (Anttila et al. 2002; Metsahonkala et al. 2006; 
Nahman-Averbuch et al. 2019) in the PT was observed dur-
ing the intercritical period when compared to healthy sub-
jects. Normal pressure and cold PTs were observed in elderly 
migraine patients in one study (Uthaikhup et al. 2009). Even 
when episodic migraine becomes chronic, uncertainty about 
the PT value remains, since both normal or significantly 
reduced mechanical, thermal, and electrical PTs (Cooke 
et al. 2007; Perrotta et al. 2010; Schwedt et al. 2011; Zap-
paterra et al. 2011; Grossi et al. 2011; Palacios-Ceña et al. 
2016) have been detected.

Overall, PT data obtained from episodic and chronic 
migraine in adolescents, adults, and elderly patients are 
inconclusive. These data support the involvement of the 
peripheral portion of the trigeminovascular system solely 
during the headache phase.

Central sensitization in migraine

Direct (via tissue injury) or indirect (via sterile or neuro-
genic inflammation) involvement of peripheral trigeminal 
nerve endings can trigger a long-lasting increase in the 
excitability of spinal cord neurons, profoundly chang-
ing the gain of the somatosensory system and leading to 
pain hypersensitivity. Overall, this transient or persistent 
brain state is termed “central sensitization” and refers to an 
enhancement in cortical excitability responsible for plastic 
adaptive changes in the “salient network” (previously known 
as the “pain neuromatrix”) (Iannetti and Mouraux 2010). It 
results in decreased nociceptive thresholds and increased 
responsiveness to noxious and innocuous peripheral stimuli, 
i.e., increased subjective perception of pain intensity (PPI) 
and expansion of the receptive fields of central nociceptors 
(Woolf 2011). According to this definition, the reduction in 
painful thresholds observed during a migraine attack can 
also be part of the clinical manifestation of a central sensi-
tization process.

Compared to the interictal period, increased subjective 
PPI with frank cutaneous allodynia was described during the 
early and late phases of migraine in two studies by the same 
research group, which was further decreased in both the ipsi-
lateral and contralateral forehead, as well as the ipsilateral 
forearm (Burstein et al. 2000a, b). When other research-
ers followed the various phases of the migraine cycle, they 
discovered an inverse ‘U’-shaped pattern in subjectively 
judging PPI: a progressive linear increase of subjective PPI 
during the pain-free period, an abrupt decrease during the 
prodromal phase, and a further increase during the headache 
and post-headache phase (Uglem et al. 2017a, b).

Another way to judge subjective PPI is to verify the 
threshold of pain perception in response to a painful  CO2 
laser or contact heat stimulus and record the resulting 
cortical response, termed pain-related evoked potentials 
(PREPs). Using a  CO2 laser as test stimulation source 
decreased basic PTs and increased cortical amplitudes 
during spontaneous or experimentally induced migraine 
attacks in the bilateral cephalic (supraorbital) and extra-
cephalic (hand) areas ipsilateral to the headache side com-
pared to those in the interictal phase (de Tommaso et al. 
2002, 2004a, b 2005e). These effects were still present 
2 h after intake of either almotriptan or lysine acetylsali-
cylate, although treatment provided relief from headaches 
(de Tommaso et al. 2005e). It is interesting to note that 
this neurophysiological behaviour closely mimics the 
activation pattern of the brainstem in neuroimaging, as it 
increases during an attack and remains elevated even after 
pain relief induced by injection of sumatriptan (Weiller 
et al. 1995). It is well known that nociceptive afferents, 
regardless of origin (cephalic or extracephalic), are able to 
activate brainstem nuclei that play a relevant role in medi-
ating and maintaining central sensitization (Zambreanu 
et al. 2005; Lee et al. 2008).

With the exception of a few studies (de Tommaso et al. 
2015; Vecchio et al. 2016), the vast majority of articles in 
which PPI are studied in response to contact heat irritat-
ing gaseous ammonia (Moulton et al. 2008, 2011; Stanke-
witz et al. 2011, 2013; Russo et al. 2012a, 2017a; Schwedt 
et al. 2014), or laser (de Tommaso et al. 2005f, 2007; Di 
Clemente et al. 2013) stimulations do not report signifi-
cant differences between migraineurs during the pain-free 
phase and healthy subjects. No differences in PPI were 
detected even after distracting tasks (de Tommaso et al. 
2005f, 2008), after central (de Tommaso et al. 2010; Vec-
chio et al. 2016) or peripheral neuromodulation (Vecchio 
et al. 2018a, b), and during the premenstrual phase of the 
hormonal cycle (de Tommaso et al. 2009).

Nevertheless, using paradigms specifically designed 
to emphasize central sensitization processes such as the 
administration of capsaicin and the wind-up phenom-
enon, some authors have observed an increase in subjec-
tive values of PPI in response to both laser (de Tommaso 
et al. 2005c, 2007) and mechanical, electrical, or thermal 
stimuli, especially in patients with higher attack frequency 
(Weissman-Fogel 2003; Gierse-Plogmeier et al. 2009; Per-
rotta et al. 2010).

Overall, the assessments of subjective PPI in response 
to several painful modalities are not conclusive for a clear 
state of central sensitization in between migraine attacks 
but rather for a subclinical allodynia state that is at the 
boundary between behavioural responses and irritable 
nervous state.
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Descending pain control systems in migraine

The application of heterotopic pain-conditioning stimulation 
is a well established and validated in vivo model for study-
ing conditioned pain modulation. The latter is mediated by 
aminergic and opioidergic signalling in the brainstem (PAG) 
and prefrontal cortical structures. Many studies on migraine 
have reported defective conditioning of sensory noxious and 
innocuous responses by endogenous pain control (de Tom-
maso et al. 2007; Coppola et al. 2010b; Nahman-Averbuch 
et al. 2013, 2019; Fabjan et al. 2014; Guy et al. 2018; Kisler 
et al. 2018; Williams et al. 2019; Bogdanov et al. 2019), 
with one exception (Teepker et al. 2014). Altered turnover 
of monoamines, opioids, or acetylcholine released by brain-
stem nuclei may underlie aberrant central pain modulation 
in migraine, as suggested by several seminal pharmacologi-
cal studies (Sicuteri 1976; Mascia et al. 1998; Leone et al. 
2000; Nicolodi et al. 2002; Hamel 2007). Some of these 
neurotransmitter abnormalities are corroborated by both 
neuroimaging and neurophysiological methods. PET studies 
using radio-labelled 5-hydroxytryptamine (5-HT) receptor 
ligands or the 5-HT precursor tryptophan disclosed various 
abnormalities in migraine patients, including normalization 
of increased 5-HT synthesis after sumatriptan administration 
(Sakai et al. 2008), increased 5-HT1A receptor availability in 
pontine nuclei (Demarquay et al. 2011) during an attack, and 
decreased 5-HT1B receptor binding in various cortical areas 
involved in pain processing between attacks (Deen et al. 
2018). In the latter study, the authors also found a positive 
correlation between time evolved since the last attack and 
5-HT1B receptor density in the dorsal raphe and midbrain, 
presumably related to downregulation of these receptors 
during the attack in response to increased brain serotonin. 
Nonetheless, reduced neuronal density and increased iron 
deposition within midbrain areas, including the dorsolateral 
pons and PAG, were observed during migraine (Welch et al. 
2001; Marciszewski et al. 2018b; Domínguez et al. 2019), 
with fluctuations depending on the migraine cycle (Meylakh 
et al. 2018; Marciszewski et al. 2018a). Using diffusion ten-
sor imaging (DTI), a recent study has reported that imme-
diately prior to an attack, mean diffusivity decreased in the 
spinal trigeminal nucleus, dorsomedial/dorsolateral pons, 
and midbrain periaqueductal grey matter/nucleus cuneiform, 
and increased again immediately following the migraine 
attack (Marciszewski et al. 2019). Migraineurs showed age-
related metabolic changes in the brainstem (especially the 
posterior pons) and other areas associated with learning and 
memory (hippocampus, fusiform gyrus, and parahippocam-
pus) unrelated to disease duration or migraine days (Lisicki 
et al. 2019).

Malfunctioning subcortical control of neural process-
ing in the cerebral cortex is thought to be responsible for 

the functional cortical abnormalities frequently observed 
interictally in migraine. Lack of habituation to repetitive 
stimuli in brainstem auditory-evoked potentials (Sand 
et al. 2008b) and event-related cognitive potentials (Evers 
et al. 1999) was found to be related to platelet serotonin 
content during the migraine cycle. The intensity depend-
ence of auditory-evoked potentials, which is inversely 
related to synaptically released serotonin in the central 
nervous system (CNS) (Wutzler et al. 2008), was reported 
to be stronger in interictal migraine compared to that in 
healthy controls (Wang et al. 1996; Ambrosini et al. 2003). 
Reduced brainstem activation in migraine may cause a 
lower interictal thalamic/thalamocortical drive, as recently 
confirmed by analysis of high-frequency oscillatory activi-
ties in multichannel somatosensory-evoked potentials 
(Porcaro et al. 2017). Moreover, like that for the brain-
stem, reduced thalamic control of cortical processing may 
also contribute to both lack of sensory habituation (Cop-
pola et al. 2012) and paradoxical responses obtained after 
non-invasive brain neuromodulation, such as increased or 
decreased responses to inhibiting or activating transcra-
nial magnetic stimulation, respectively (Brighina et al. 
2005, 2011; Pierelli et al. 2013). Altered thalamic control 
in migraine may contribute to abnormal connectivity pat-
terns between cerebral networks, as recently shown with 
structural and functional MRI connectivity studies dur-
ing (Coppola et al. 2016b; Amin et al. 2018) and between 
(Wang et al. 2016; Coppola et al. 2016c) attacks. These 
abnormalities may be due to subtle plastic morphofunc-
tional changes within thalamic nuclei in migraine between 
attacks (Coppola et al. 2014; Magon et al. 2015; Hodkin-
son et al. 2016b) that seem to be dependent on the time 
point at which patients are recorded during the migraine 
cycle (Coppola et al. 2014). The dependence of morpho-
logical and functional patterns of migrainous brain change 
on attack occurrence, time point during the interictal 
period, and migraine chronification was previously illus-
trated with neurophysiological (Kropp and Gerber 1998; 
Judit et al. 2000; Siniatchkin et al. 2000; Katsarava et al. 
2003; Coppola et al. 2010a, 2013b, c, 2016a; Mehnert 
et al. 2019), psychophysiological (Shepherd et al. 2011; 
Nguyen et al. 2014), and neuroimaging methods (Moulton 
et al. 2011; Stankewitz et al. 2011, 2013; Coppola et al. 
2015, 2016b, c; Deen et al. 2018). Aberrant functional 
activity in subcortical structures may be also the source 
of origin of some migraine accompanying symptoms. For 
instance, malfunctioning structures located within the 
brainstem may be the source of origin of phonophobia 
(medial olivocochlear system) (Joffily et al. 2016), pho-
tophobia (caudal trigeminal brainstem) (Okamoto et al. 
2009), and osmophobia (rostral part of the pons) (Stanke-
witz and May 2011). Even an abnormal filtering of rel-
evant sensory information at the level of different thalamic 
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nuclei seems to play a major role in determining some of 
the symptoms that accompany and sometimes precede a 
migraine attack, such as photophobia (pulvinar) (Noseda 
et al. 2010), extracephalic allodynia (several, mostly poste-
rior thalamic nuclei) (Burstein et al. 2010), and vestibular 
symptoms (mediodorsal thalamic complex) (Russo et al. 
2014). Whether CGRP released prior and during migraine 
attacks exerts in patients the same central and peripheral 
actions that cause migraine-like light aversion in animal 
models remains to be determined (Mason et al. 2017).

Unlike innocuous cortical-evoked responses, PREP 
amplitudes do not decrease in response to repetitive pres-
entation of noxious stimuli irrespective of the phase of the 
migraine cycle, being deficient between (Valeriani et al. 
2003; de Tommaso et  al. 2005a) or during attacks (de 
Tommaso et al. 2005b), and even when migraines become 
chronic (Ferraro et al. 2012). This is probably because nox-
ious stimuli are considered potentially threatening to the 
CNS, such that clear mechanisms of habituation are lacking. 
By contrast, they trigger cortical inhibitory antinociceptive 
systems that reduce the response amplitude, a mechanism 
that is dysfunctional in migraine. This hypothesis is sup-
ported by functional MRI studies in which decreased activity 
to thermal stimuli over time is accompanied by increased 
BOLD activity in the subgenual anterior cingulate cortex 
(Bingel et al. 2007), which is able to induce analgesia, since 
it plays a major role in the central descending opioider-
gic pain control system (Casey et al. 2000). Nonetheless, 
monoaminergic systems may also play a role in decreasing/
increasing behavioural responses to pain, as blocking post-
synaptic dopamine D2 receptors of the mesolimbic system 
with haloperidol increased, rather than decreased, cortical 
responses to consecutive painful electrical stimulations 
(Bauch et al. 2017).

Overall, modulation of brainstem and midbrain pain path-
ways, in synergy with thalamic and thalamocortical path-
ways, may be one of the critical factors for the initiation 
and maintenance of migraine attacks and its accompanied 
symptomology.

Cerebral plastic changes related to migraine

As part of the central sensitization process, the cortical topo-
graphical representation of pain, elicited using laser stim-
uli, changes plastically in both episodic (de Tommaso et al. 
2004a) and chronic (de Tommaso et al. 2005d) migraineurs 
compared to that in healthy subjects.

Neuroimaging techniques are increasingly used today to 
assess plastic changes in the brain in response to the more 
or less frequent occurrence of migraine pain.

Several studies were performed in episodic migraine 
patients between attacks using functional MRI in response 

to noxious stimuli delivered over trigeminal or extratrigemi-
nal areas. Overall, they demonstrated an increased BOLD 
response in brain areas involved in nociception/antinocicep-
tion, affective, and cognitive features related to pain process-
ing (insula, middle cingulate and anterior cingulate [ACC] 
cortices, secondary somatosensory cortex, amygdala, cer-
ebellum, caudate nuclei, motor and premotor areas, temporal 
pole, lentiform nuclei, posterior thalamus, fusiform gyrus, 
subthalamic nucleus, hypothalamus, pre- and post-central 
gyrus, visual areas, hippocampus, parahippocampal gyrus, 
dorsolateral prefrontal cortex [DLPFC], and perigenual part 
of the ACC) (Moulton et al. 2011; Stankewitz et al. 2011, 
2013; Schwedt et al. 2014; Mathur et al. 2016; Russo et al. 
2017a, b, 2019; Schulte et al. 2017) and reduced BOLD acti-
vation within the brainstem (trigeminal nucleus caudalis and 
nucleus cuneiformis) (Stankewitz et al. 2011; Schulte and 
May 2016). Furthermore, parts of the pain-induced BOLD 
signal changes were not related to the presence of depression 
or anxiety (Schwedt et al. 2014). Conversely, the time to the 
next attack was positively correlated with activation strength 
within the trigeminal nuclei (Stankewitz et al. 2011), and 
the headache intensity was negatively related to the middle 
prefrontal cortex and posterior cingulate cortex (PCC) and 
positively related to bilateral insula activation (Mathur et al. 
2016). Attack frequency was related to activation strength 
within several brain areas (middle cingulate, insula, fusi-
form gyrus, hippocampus, DLPFC, precentral gyrus, PAG, 
and cerebellum) (Moulton et al. 2011; Schwedt et al. 2014; 
Mathur et al. 2016; Mehnert and May 2017), whereas years 
with migraine were correlated positively with activation 
strength in the fusiform gyrus (Schwedt et al. 2014), nega-
tively with that in the superior temporal gyrus (Mathur et al. 
2016), and positively with that in the cerebellum (Russo 
et al. 2019). A study explored the effect of the beta-blocker 
metoprolol on the cerebral pain processing and reported 
that BOLD signal intensity in the hypothalamus increased 
under metoprolol during pain compared to that under pla-
cebo (Hebestreit and May 2017).

Functional abnormalities within brain structures have 
been described of migraine attacks. An enhanced BOLD 
signal was observed in response to noxious stimuli within 
the temporal lobe structures (Moulton et al. 2011), dorsal 
parts of the pons (Stankewitz et al. 2011), posterior hypo-
thalamus (Schulte et al. 2017), and cerebellum (Mehnert and 
May 2017). Notably, the spinal trigeminal nucleus activation 
seems to fluctuate during the migraine cycle; it was slightly 
greater during the preictal state in migraine patients than in 
healthy subjects, but it was significantly enhanced in the pre-
ictal state compared to the interictal scans. Spinal trigemi-
nal nucleus activation was decreased during an acute attack 
compared to that during the preictal period (Stankewitz et al. 
2011) when it is more strongly activated by visual sensory 
load (Schulte et al. 2018) (Fig. 1). Nonetheless, during 
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attacks, and even more so with aggravation and chronifi-
cation of attacks, migraineurs have increased μ-opioid 
receptor-mediated neurotransmission in pain perception and 
modulating brain regions, such as the caudate, thalamus, 
amygdala, and parahippocampus (Jassar et al. 2019).

One study examined a patient with mixed migraine with 
and without aura longitudinally every day for 30 days using 
painful olfactory stimuli (gaseous ammonia) as a functional 
task in MRI during the ictal phase compared with preictal 
and interictal phases (Schulte and May 2016). In this patient, 
the hypothalamus was significantly more active immediately 
before the headache phase when it also showed the greatest 
functional coupling with the spinal trigeminal nuclei. During 
the ictal state, the hypothalamus was functionally coupled 
with the dorsal rostral pons (Schulte and May 2016), an area 
considered to be the location of a “generator” of the attack 
(Weiller et al. 1995; Bahra et al. 2001; Stankewitz and May 
2011).

Whether these structural and functional alterations in 
brain areas devoted to the processing of nociceptive/antino-
ciceptive information are related to aberrant white fibre bun-
dles and/or to alterations in neuronal density of grey matter 
remains to be determined.

Several studies have characterized white-matter diffu-
sion changes in migraine patients with and without aura, 
with variable involvement of diffusive metrics of the visual, 
trigeminal, somatosensory tracts, thalamus, PAG, and cor-
pus callosum (Rocca et al. 2003, 2008; Granziera et al. 2006, 
2014; DaSilva et al. 2007; Schmitz et al. 2008; Yuan et al. 
2012; Szabó et al. 2012, 2018; Yu et al. 2013; Coppola et al. 
2014). In some studies, these interictal changes in cortical 
synaptic connectivity patterns may directly depend on the 
recurrence of migraine attacks (Schmitz et al. 2008; Yuan 
et al. 2012; Szabó et al. 2018) and on the general level of 
neuroinflammation measured as the interictal plasma lev-
els of pituitary adenylate cyclase-activating polypeptide-38 
(PACAP38) (Veréb et al. 2018). This may restructure neural 
circuits and may, in turn, change the neuronal density of the 
grey matter.

Indeed, there are several reports of grey-matter morpho-
metric changes in migraine patients, the majority of which 
occur in areas coincidentally involved in the transmission 
and processing of pain (Rocca et al. 2006; Kim et al. 2008; 
Schmidt-Wilcke et al. 2008; Schmitz et al. 2008; Valfrè et al. 
2008; Liu et al. 2013; Hougaard et al. 2014; Soheili-Nezhad 
et al. 2019). Most of these morphological abnormalities were 

Fig. 1  Schematic representation of the results provided by the stud-
ies that found a correlation between different clinical, morphological, 
or functional variables and the number of days elapsed since the last 
migraine attack. During the interictal phase, the BOLD activity of the 
spinal trigeminal nucleus (STN) decreases, while the fractional ani-
sotropy (FA) of the thalami, the 5-HT1B receptor density in the dorsal 
raphe nuclei (DRN) and the midbrain, and the cortical responsive-
ness, measured by recording evoked potentials (EPs) to different sen-
sory modalities, increase progressively with increasing time since the 
last attack and in parallel with a decrease in the subjective perception 
of pain intensity (PPI), a measure of central sensitization. During the 

preictal phase, when PPI suddenly decreases, STN BOLD activation 
and cortical hyper-responsiveness reach their maximum, whereas tha-
lamic FA and 5-HT1B receptor density in the DRN and in the mid-
brain approach their minimum. During the headache phase, when PPI 
reaches its maximum increase, STN BOLD activity, as well as tha-
lamic FA and 5-HT1B receptor density in the DRN and midbrain, are 
at their lowest values and cortical hyper-responsiveness normalizes. 
During a chronic migraine, at the time when PPI is normal or at the 
lower limits of normality, STN BOLD activity normalizes, as does 
thalamus FA (personal data) and cortical responsiveness
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related to the frequency of attacks and duration of migraine 
(Kim et al. 2008; Schmitz et al. 2008; Valfrè et al. 2008; 
Rocca et al. 2014) but not with the side of aura (Messina 
et al. 2013; Hougaard et al. 2014).

In addition, the volume of the grey matter in migraine 
fluctuates over time depending on the cycle of migraine 
(Coppola et al. 2015) and longitudinal changes in attack 
frequency (Messina et al. 2018). Nevertheless, abnormal 
grey-matter volume in areas ascribable to pain process-
ing (Schmidt-Wilcke et al. 2008; Valfrè et al. 2008; Bilgic 
et al. 2016; Lai et al. 2016; Neeb et al. 2017) and multi-
sensory integration (Lai et al. 2016) has also been consist-
ently observed in chronic migraine, sometimes depending 
on the duration of the disorder and consumption of acute 
medication (Coppola et al. 2017). In fact, altered struc-
tural integrity and functional connectivity of various areas 
belonging to the descending pain modulatory system such 
as the periaqueductal grey (Riederer et al. 2013; Michels 
et al. 2017; Chen et al. 2017a, b) and thalamic nuclei (Chen 
et al. 2017d) have been repeatedly identified in patients with 
medication overuse headache (MOH). Moreover, the orbito-
frontal cortex was less connected both metabolically (Fumal 
et al. 2006) and functionally to the spinal trigeminal nucleus 
and cerebellum (Mehnert et al. 2018) in patients with MOH 
before drug withdrawal, whereas these connections normal-
ized after drug discontinuation (Fumal et al. 2006; Mehnert 
et al. 2018).

As with other chronic pain conditions, the physiopathol-
ogy of migraine has also been linked to activation of the glial 
system. Activation of glia in areas belonging to the salient 
network and visual system was detected using integrated 
PET/MRI brain scans with  [11C]PBR28, a radioligand that 
binds to the 18 kDa translocator protein (a marker of glial 
activation) in migraine with aura patients, although outside 
the aura and headache phase (Albrecht et al. 2019).

Because morphometric changes in the micro- and mac-
rostructure of the brain may reflect a restructuring of local 
neural circuits through changes in neuronal connections via 
branching and crossing of dendritic trees and/or changes in 
cortical synaptic connectivity and plasticity. It is plausible 
that in the presence of these extensive abnormalities in the 
brain micro- and macrostructures associated with migraine, 
the communication between areas related to the cortical pain 
processing is equally altered.

Over the last decade, several fMRI studies on migraine 
have assessed the resting-state functional connectivity in 
different brain networks, suggesting that this neurological 
condition is associated with brain functional connectivity 
alterations. The intrinsic connectivity within brain areas 
anchored to the default mode network (DMN), which is 
involved in self-referential orientation and monitoring, was 
reduced during the interictal period of migraine without aura 
patients compared to that in healthy subjects (Tessitore et al. 

2013; Hubbard et al. 2014; Hodkinson et al. 2016a; Yu et al. 
2017a; Faragó et al. 2017; Yang et al. 2018). Moreover, the 
DMN itself was observed to be more connected with the 
executive control network and insula (Xue et al. 2012) but 
less connected with prefrontal and temporal regions (Tessi-
tore et al. 2013), as well as the visuospatial system (Coppola 
et al. 2016c). Conversely, in migraine with aura patients, 
the DMN functional intrinsic connectivity was increased 
between attacks (Faragó et al. 2017). The intraregional con-
nectivity of the executive control network (ECN) was dimin-
ished in migraineurs when scanned between attacks (Yu 
et al. 2017a; Yang et al. 2018), and the ECN itself was less 
interconnected with the middle frontal gyrus, dorsal ACC 
(Russo et al. 2012b; Tessitore et al. 2015), and precuneus (Li 
et al. 2017). Visual areas are known to be deeply involved 
in migraine pathophysiology, and their intrinsic connectiv-
ity was reduced (Hodkinson et al. 2016a; Soheili-Nezhad 
et al. 2019), especially within the visuospatial (Hubbard 
et al. 2014), ventral (Lisicki et al. 2018), and dorsal atten-
tion (Yang et al. 2018) systems, the latter being, in turn, 
less interconnected with the DMN (Coppola et al. 2016c) of 
patients affected by migraines without aura. Intriguingly, a 
recent study found that visual cortical hyper-responsiveness 
in episodic migraine patients, as assessed with single-trial 
visual evoked potentials, was proportional to grey-matter 
volume in the visual cortex and the right temporoparietal 
junction, an area belonging to the ventral attention network. 
The latter was, in turn, strongly interconnected with a series 
of areas involved in attention control to incoming salient 
events, such as headache, finally providing for the first time a 
unique link between structural and functional abnormalities 
within the migraine brain (Lisicki et al. 2018). In migraine 
with aura, intrinsic connectivity within the attention, medial 
and lateral visual systems (Faragó et al. 2017), advanced 
visual network (Russo et al. 2019), and lingual gyrus (Tede-
schi et al. 2016) was enhanced between attacks. Compared 
to those in healthy subjects, areas within the sensorimotor 
(Hubbard et al. 2014; Hodkinson et al. 2016a; Yang et al. 
2018), auditory (Hodkinson et al. 2016a; Yang et al. 2018), 
and cingulo-opercular (Yang et al. 2018) networks were less 
functionally connected in migraine without aura patients.

Areas anchored to the salience network/pain neuroma-
trix, mostly involved in detection and integration of salient 
sensory cues, showed less functional connectivity in both 
episodic migraine without aura patients (Yang et al. 2018) 
and in chronic migraine (CM) patients with and without 
medication overuse (Androulakis et al. 2017) compared 
to that in healthy subjects. Moreover, the salience network 
showed a greater degree of centrality (a measure of network 
importance) in CM than in episodic migraine. Connectivity 
strength of the salience network to the hypothalamus was 
more pronounced, while its connectivity to the dorsal raphe 
nuclei was attenuated in CM compared to that in episodic 
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migraines (Lee et al. 2019). The limbic system, which sup-
ports various functions including emotion, conduct, motiva-
tion, and long-term memory, was more connected in epi-
sodic migraine without aura patients but less connected in 
CM compared to that in healthy subjects (Chen et al. 2017c).

In our previous fMRI study performed in CM patients 
without previous history of medication overuse, the analysis 
of independent components revealed abnormalities in the 
functional connectivity between large-scale neurocognitive 
networks, specifically between the DMN, dorsal attention 
system (DAS), and ECN compared to those in healthy con-
trols (Coppola et al. 2019).

Few studies have examined the brain of migraineurs dur-
ing attacks using resting-state fMRI. During the initial 6 h 
of a spontaneous migraine attack, we (Coppola et al. 2016b) 
observed that the executive control network and dorsoven-
tral attention system were significantly less interconnected. 
Moreover, in healthy subjects, but not in migraine patients, 
greater strength of the dorsoventral attention system was 
associated with lower bilateral thalamic diffusivity values. 
In patients, greater strength of the executive control network 
was associated with fewer monthly migraine days (Coppola 
et al. 2016b). In a companion article by the same group of 
researchers, these patients showed stronger functional con-
nectivity between brain areas anchored to the DMN, i.e., 
between the medial prefrontal cortex (MPFC) and posterior 
cingulate cortex, and between the MPFC and bilateral insula. 
Furthermore, the strength of MPFC-to-insula connectivity 
was negatively correlated with pain intensity (Coppola et al. 
2018). Amin et al. studied cerebral resting-state functional 
connectivity in the very early phase preceding a migraine-
like headache induced by the administration of PACAP38 
(Amin et al. 2016). In the early headache phase, PACAP, 
but not vasoactive intestinal polypeptide that has no attack-
triggering effect, changed connectivity patterns in a priori 
selected salience, sensorimotor, and default mode networks 
(Amin et al. 2016). During spontaneous migraine attacks, 
the same authors also found evidence for abnormal network 
connectivity between the thalamus and several pain-mod-
ulating and -encoding cortical areas, such as the superior 
parietal lobule, insular cortex, primary motor and premotor 
cortices, supplementary motor area, and orbitofrontal cor-
tex (Amin et al. 2018). Interestingly, non-pharmacological 
treatment with kinetic oscillation stimulation in the nasal 
cavity gave rise to a downregulated pattern of resting-state 
connectivity in a group of migraineurs during attacks (Li 
et al. 2016a).

Overall, the huge amount of studies conducted with neu-
roimaging techniques have clearly shown that migraine is 
accompanied by changes at multiple levels in the brain, from 
the synaptic level, as shown by DTI and voxel-based mor-
phometry (VBM) studies, to the level of large-scale neuronal 
networks. In fact, the analysis of resting-state MRI data in 

various subgroups of migraine patients and in various phases 
of the migraine cycle unravelled the involvement of neuro-
cognitive networks directly (salience network) or indirectly 
(executive, auditory, visual, and visuo-attentive networks) 
related to pain–cognition interactions. This activity of large-
scale neuronal networks could be the consequence of the 
attack recurrence. However, it could also reflect an intrin-
sic vulnerability of the migraine brain and constitute the 
pathophysiological basis of the inability to cope with the 
cognitively demanding conditions of daily activities due to 
the presence or expectation of migraine pain.

To clarify the influence of clinical migraine severity on 
plastic changes in functional networks related to pain–cogni-
tion, several authors have performed regression analyses for 
various patient groups.

In episodic migraine patients between attacks, the aver-
age pain intensity correlated negatively with functional con-
nectivity between the right ACC–PCC in migraine with-
out aura (Yu et al. 2017a), with abnormal inflows to the 
right posterior thalamus from the right DLPFC (Wang et al. 
2016), reduced connectivity within the middle frontal gyrus 
(Russo et al. 2012b), and connectivity changes between the 
anterior insula and occipital areas (Niddam et al. 2016). In 
CM, average pain intensity was correlated positively with 
the strength of DAS connectivity and negatively with the 
strength of ECN connectivity (Coppola et al. 2019). Inter-
estingly, decreased visual analogue scale scores after treat-
ment with acupuncture correlated negatively with functional 
connectivity of the right frontoparietal network (Li et al. 
2015, 2017) and with changes in functional connectivity 
among the PAG, rostral ACC, and ventral striatum (Li et al. 
2016b). Duration of migraine disease correlated negatively 
with the strength of both intrinsic connectivity and causal 
influences from the frontoinsular cortex (FIC) to the ACC 
(Yu et al. 2012, 2017a), insular subregions (Yu et al. 2017b), 
and functional connectivity values in the prefrontal cortex, 
putamen, caudate nucleus (Gao et al. 2016), right nucleus 
accumbens, and bilateral caudate (Yuan et al. 2013). Con-
versely, it correlated positively to functional connectivity of 
the bilateral PAG with bilateral thalamus and putamen, left 
pallidum, and right medial orbitofrontal gyrus (Chen et al. 
2017a); functional connectivity between the dorsal ACC 
and DLPFC/orbitofrontal cortex (Jin et al. 2013); greater 
connectivity between the DMN/ECN and insula (Xue et al. 
2012); and increased average regional homogeneity values 
in the thalamus, brainstem, and temporal pole (Zhao et al. 
2013). The mean monthly frequency of migraine attacks cor-
related negatively with the increased strength of causal influ-
ences from the rFIC to the right DLPFC (Yu et al. 2017a) 
and positively with connectivity between the left middle 
frontal gyrus and medial PFC (Niddam et al. 2016), func-
tional connectivity between the bilateral caudate and left 
insula (Yuan et al. 2013), and connectivity between the PAG 
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and several cortical areas primarily involved in nociception 
and somatosensory processing (dorsomedial PFC, primary 
somatosensory area, primary motor cortex, ACC, parahip-
pocampal gyrus, amygdala, DLPFC, angular gyrus, and 
medial thalamus Mainero et al. 2011). The parameter time 
interval to the nearest migraine attack was positively corre-
lated with connectivity between the left middle frontal gyrus 
and medial prefrontal cortex in MO, and was correlated with 
seeds in the posterior cingulate and several regions within 
the DMN, including the ventral medial prefrontal cortex, 
bilateral hippocampi, and a region in the middle occipital 
gyrus in the migraine with aura (Niddam et al. 2016).

Genetic predisposition may play a role in both abnormal 
brain morphology and its connectivity patterns, since grey-
matter volumetric abnormalities in adults within the sali-
ence network (Rocca et al. 2014) and widespread abnormal 
resting-state functional connectivity (Colon et al. 2019) were 
also observed in paediatric patients/adolescents affected by 
migraine.

Overall, neuroimaging studies have demonstrated that the 
migraine brain undergoes plastic changes in both the micro-
structure and macrostructure of the brain and in the function-
ing of cortical networks, all of which are under the influence 
of medication overuse. In some cases, these changes may 
be related to the severity of the clinical migraine presenta-
tion. The observation that morphofunctional abnormalities 
of the migraine brain can be proportional to the subjective 
perception of headache severity may provide an opportunity 
to objectively determine the pain intensity perceived by the 
patient bypassing verbal assessment (Mouraux and Iannetti 
2018). Further studies are necessary to prove that these 
abnormalities manifest themselves early in the migraine 
patient’s life, representing an inherited phenotypic manifes-
tation of the disorder.

Conclusions

The aforementioned experimental studies clearly suggest 
that brain structures implicated in migraine pathophysiol-
ogy, such as the brainstem nuclei (monoaminergic nuclei, 
PAG, spinal trigeminal nucleus); hypothalamic and thalamic 
nuclei; and somatosensory, salient, and visual area cortices 
should not be considered as isolated culprits for dysfunction 
but as a network of functionally interconnected, mutually 
influencing cerebral areas. Regardless of the primary site 
of dysfunction, all areas to which it is connected can, in 
turn, be influenced by a domino effect. This explains why 
determining the primary ictal dysfunction is a challenge in 
patients in whom sequential studies are notoriously difficult 
and why the concept of the “migraine generator” recently 
switched from the dorsal pons (Weiller et al. 1995) to the 
hypothalamus (Schulte and May 2016).

From the studies summarized above emerges a marginal 
role of the peripheral portion of the trigeminal system, rein-
forcing the concept that the CNS mechanisms that sustain 
migraine headaches do not consist solely of a bottom–up 
process involving a painful focus, located within the brain-
stem and midbrain, which modifies inputs to the next higher 
level (thalamus and cerebral cortex). Indeed, several CNS 
regions and networks mediate subtle forms of plasticity by 
adjusting neural maps downstream and consequently altering 
all the modulatory mechanisms at the origin of sensory per-
ceptions. Disturbances in normal sensory processing within 
these large-scale neuronal networks could lead to maladap-
tive changes, impaired trigeminovascular functions, and 
consequently modifications in subjective pain perception, 
which ultimately comprise the ‘central sensitization’ pro-
cess (Fig. 2). These concepts may unite the ‘bottom–up’ and 
‘top–down’ mechanisms of trigeminal nociception and pain. 
These concepts should be taken into account in the future 
development of therapeutic strategies aimed at improving 

Fig. 2  Schematic representation of the possible pain processing 
model in migraine. Migraine may involve irritation of meningeal 
perivascular nociceptive trigeminal nerve endings. It is not known 
whether this involvement is initiated by cortical spreading depres-
sion (CSD), manifested in migraine with aura or silent in migraine 
without aura, or by abnormal activation either of the spinal trigeminal 
nucleus or the descending pain control systems at the brainstem or 
midbrain levels. Abnormalities at these levels could activate the auto-
nomic nervous system (the hypothalamus), especially shortly before 
and during an attack. However, they could also impede to correctly 
filter out sensory information afferent to the CNS through the thala-
mus. These morphofunctional abnormalities in subcortical structures 
could, in turn, be responsible for abnormalities in the microstructure 
of white-matter fibre bundles, as well as for the altered grey-matter 
neuronal density in brain areas devoted to processing salient infor-
mation such as pain. In turn, the presence of these alterations in 
the micro- and macrostructures of the brain could be the backbone 
architecture of the changes in resting functional connectivity maps 
observed during all migraine phases, which ultimately represent the 
anatomical bases of ‘central sensitization’ process
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the quality of life of patients experiencing craniofacial dys-
functions due to sustained or chronic headaches.
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