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Abstract

Background: The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory

unified theory.

Methods: We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using

transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials. We summarized

the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnor-

malities underlying migraine recurrence.

Results: All electrophysiological modalities have determined specific changes in brain dynamics across the different

phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and

excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuro-

modulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased

slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, non-

painful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal

phases.

Conclusion: Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamus-

cortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the

selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genet-

ically determined dysfunctions of the synaptic short- and long-term learning mechanisms.
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Introduction

Migraine is one of the most common neurological dis-

orders, affecting over one billion people worldwide. As

a severe condition that typically affects young individ-

uals, it also represents a leading cause of disability (1).

Even though the origin of migraine is still not

completely understood, it is widely considered to rep-

resent a cyclical brain disorder of sensory processing,

influenced by a complex combination of genetic,

behavioural and environmental factors (2). For exam-

ple, migraine attacks can be triggered by a wide
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number of factors, such as physical or psychological
stress, skipping a meal, loss or increase in sleep, and
hormonal changes. The lack of a clear genetic inheri-
tance accounts for the variability in clinical presenta-
tion of the disease, which in turn translates into an
equally wide variability in the response to prophylactic
treatments. This complex pathophysiological puzzle is
one of the reasons why migraine has historically been
considered as the functional brain disorder par excel-
lence. In this context, non-invasive electrofunctional
techniques used to investigate brain processing systems
and neuronal excitability have greatly contributed to
a better understanding of the biology of migraine
disorder (3).

Among the array of available techniques, transcranial
magnetic stimulation (TMS), electroencephalography
(EEG), as well as evoked potentials (EPs) – particularly
visual and somatosensory evoked potentials (VEPs and
SSEPs, respectively) – have been used abundantly for
the investigation of migraine (4). Although these tests
do not allow for individualized clinical analyses, they
nonetheless represent flexible instruments for analysing
the neurobiology of headache disorders. In some cases,
neurophysiological tools have even evolved into treat-
ment strategies for migraine, as is the case for TMS
(5,6), which has a direct effect on cortical spreading
depression (CSD), thalamic neural modulation and cor-
tical GABAergic circuits (7,8).

In this article we will first proceed to summarize and
describe the main studies that have applied TMS, EEG
and EPs for the investigation of cortical brain
responses in migraine, migraine with aura, and associ-
ated conditions such as visual snow syndrome (9). We
will focus on the different techniques and methodolo-
gies, highlighting how, overall, the results found in the
literature can be directly related to an alteration of the
mechanisms underlying synaptic plasticity and cortical
information processing.

Methods

This is a narrative review on the use neurophysiological
investigations in migraine and related disorders. A lit-
erature search was conducted on PubMed (by authors
FP, AV and GS independently) on 15 October 2022
and repeated on 16 February 2023. We searched for
original research publications on studies using either
TMS, EEG, SSEPs or VEPs to investigate migraine
with and without aura and visual snow, using the fol-
lowing terms: “TMS OR transcranial magnetic stim-
ulation”, “EEG OR electroencephalography”, “VEP
OR visual evoked potentials”, “SSEP OR somatosen-
sory evoked potentials” AND “migraine”, “aura OR
migraine with aura”, “visual snow OR visual snow
syndrome”. Additionally, we selected manuscripts

known to the authors, as well as a book chapter written
by author GC (10). The final selected articles were
revised by all authors. We summarized the key methods
and results for each technique in a narrative way in the
text and in Figure 1.

Neuromodulatory techniques and cortical

plasticity in migraine

The first neuromodulatory technique originated in the
1980s from the development of the TMS procedure, a
tool used to investigate the integrity of corticospinal
motor pathways in humans via a magnetic field capable
of electrically charging the underlying cortex in a non-
invasive manner (11). Over the last few decades differ-
ent stimulation paradigms using TMS, but also using
transcranial direct current stimulation (tDCS), have
been developed, allowing to measure neurophysiologi-
cal functions and to induce transient or durable
changes of cortical excitability and neuronal circuitry
in vivo. These include single-pulse TMS (sTMS), repet-
itive (r)TMS, tDCS, and more recently integration with
functional neuroimaging and electroencephalography
(TMS/EEG) (12). These techniques use a mechanism
akin to the short- and long-term depression (STD,
LTD) or potentiation (STP, LTP) seen at the synaptic
level to either decrease or enhance the degree of excit-
ability of the underlying cortex. Depending on the
stimulation paradigm this can be achieved temporarily
or in a sustained manner. Differences can also depend
on the stimulus location; most TMS studies in migraine
have focused on stimulating either the motor or occip-
ital cortex, or both.

Motor and occipital cortex stimulation

TMS over the primary motor cortex can objectively
measure corticospinal excitability by measuring the
resting motor threshold (RMT). RMT, together with
amplitudes of motor evoked potentials (MEPs), repre-
sent the most basic measure of motor cortex excitabil-
ity (13) with lower thresholds and larger amplitudes
suggesting increased cortical excitation, and vice
versa. Migraine RMTs were found to be normal (14–
18), reduced (19) or increased (20,21). These contradic-
tory results could be explained by the fact that, during
the interictal phase of migraine, the RMT value fluc-
tuates based on the number of days since the last attack
(22). The cortical silent period (CSP), characterized by
electromyography (EMG) silence after a single TMS
pulse over contralateral M1 (23), is widely used to mea-
sure intracortical and interhemispheric inhibitory pro-
cesses (24). Several studies showed a shortened CSP in
migraine patients, i.e. a defective inhibition (19,25–29).
Other studies, however, including patients with aura
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(16), familial hemiplegic migraine (30) or pediatric patients

(31), failed to detect any abnormalities in the CSP (32–35).
Phosphene thresholds (PTs) measure occipital

cortex excitability by determining the minimum inten-

sity of TMS stimulation over the visual cortex that

induces phosphenes. PTs only use patient reports and

are thus less objective than RMTs.
As with RMT measurements, PT levels in migraine

have been variable. Some studies found decreased

levels of PT, suggesting cortical hyperexcitability

(16,19,31,36,37), while others found equal (15,32,38)

or even increased (39) levels in patients compared to

healthy controls. While contrasting results emerged

from studying patients with migraine without aura,

consistent results came from the investigation of

migraine with aura patients. Indeed, in migraine with

aura most of the studies have found increased visual

cortex excitability, as shown by lower PT values, higher

phosphene generation (36,40), and paradoxical facilita-

tory responses to excitatory stimulations (41,42), with

one exception (32).

Abnormal mechanisms of cortical plasticity

Repetitive stimulations of TMS over the same scalp site

(rTMS) are known to alter cortical excitability and

inhibitory circuits, and could be used to study cortical

responsivity to these changes. Depending on frequency

Figure 1. Main electrophysiological changes found in migraine using TMS, EEG, SSEPs and VEPs, according to the different phases of
the migraine cycle. Created with BioRender.com.
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of stimulation, rTMS has the ability of altering neuro-
nal plasticity by either inhibiting (at low frequencies,
1Hz) (43) or activating (at high frequencies, 5–10Hz)
the underlying cortex (44). First observed by Bohotin
et al. (15), high-frequency rTMS can normalize the
interictal habituation deficit of VEPs by increasing cor-
tical excitability when administered to the visual cortex.
However, the researchers found no changes in habitu-
ation when they used low-frequency rTMS to reduce
cortical excitability. In healthy subjects, instead, excit-
atory stimulation had no effect, while inhibitory stim-
ulation induced a habituation deficit resembling that
seen in migraine patients. The authors came to the con-
clusion that the migraine brain is inherently hypoexcit-
able throughout the intercritical period, although this
interpretation is questioned by others based on data
collected using different experimental settings (42,45).
rTMS was also applied to the sensorimotor region, and
the initial amplitude and delayed habituation of SSEPs
were recorded (46,47). It is interesting to note that excit-
atory rTMS normalizes SSEPs in migraine patients by
increasing thalamocortical activity, which is instead
decreased at rest. By increasing cortical activity with
anodal tDCS on the visual (48) and temporal (49) cor-
tices, normalization of cortical evoked responses can
also be accomplished. Additionally, migraineurs show
a lesser ability than healthy subjects to modify cortical
responses over the long term following daily rTMS ses-
sions (50). There are further paradoxical effects reported
after cortical inhibitory neuromodulation, which in
migraine sufferers decreases the threshold of phosphenes
(41,42) and increases the amplitude of motor potentials
(51), as opposed to healthy subjects. These changes in
migraine can be explained by a malfunction in the STD
and LTD mechanisms, which are plasticity phenomena
that occur in the firing synapse and depend on changes
in synaptic weights or in the number of receptors
expressed in the synaptic cleft as a function of learning
and memory (52).

Using psychophysiological methods, evidence of
LTD processes failure in the migraine brain has also
been shown. Migraine patients with aura appear less
susceptible to the suppression of perceived accuracy
caused by TMS than migraine sufferers without aura
and healthy individuals (37,53–57). The same is true
when applying metacontrast masking, which involves
the effect of masking a picture, such as a ring, after
presenting a letter (58–60). In a different study of psy-
chophysiology, the authors used the sound-induced
flash illusion paradigm to describe anomalies in multi-
sensory integration. In particular, during an attack, the
feeling of numerous flashes was diminished or eliminat-
ed in patients with migraine with aura (61), and
patients did not experience short-term depression
after receiving inhibitory tDCS (62). Regarding VEPs,

phosphenes, and MEPs, the same absence of inhibitory
tDCS neuromodulation was seen (41,42,63). This could
imply either that baseline suppression cannot be further
suppressed, or that LTD mechanisms are essentially
dysfunctional and unmodulable.

However, instead of observing a physiological rise,
several researchers who attempted to explore the
processes of STP through suprathreshold trains of
high-frequency (5Hz) rTMS noticed a drop of MEP
amplitudes along the train of stimuli (64,65). These
paradoxical neuromodulatory responses are super-
potentiated during the preictal phase, whereas they
are conversely depressed during an attack and shortly
after a pain-free period, depending on the point in the
migraine cycle at which the patient is recorded (17).

The paradigms known as paired associative stimu-
lation (PAS) and short latency afferent inhibition
(SAI), which combine peripheral and cortical stimula-
tions with various interstimuli, are other techniques to
research long-term learning mechanisms. The excitabil-
ity of the sensory cortex typically reduces when a TMS
pulse is delivered to the cortex before the peripheral
sensory impulse enters the cortex; on the other hand,
the excitability increases when the TMS pulse is deliv-
ered after the peripheral sensory impulse enters the
cortex. Consistent with previous evidence (42,51), an
inhibitory PAS paradoxically increases the amplitude
of MEPs in patients with migraine without aura,
whereas an excitatory PAS does not significantly
increase the MEP. These paradoxical effects are depen-
dent on the degree of excitability of the somatosensory
thalamocortical circuit in a subset of patients (66). The
homotopic muscle response elicited through motor
TMS is inhibited by a peripheral afferent sensory
volley employed in earlier experiments to explore
both cortical GABAergic and thalamocortical cholin-
ergic networks. In one study, patients with migraine
without aura had lower levels of SAI during the
preictal and ictal periods (67). Another study indicated
that SAI was decreased in patients between attacks
compared to healthy volunteers but increased during
an attack. One study measured SAI based on each par-
ticipant’s SSEP N20 latency (68). By combining periph-
eral visual stimulation with TMS delivered over the
visual cortex, PAS can also be examined over the
visual system (69). According to this paradigm, a
group of patients with migraine without aura cannot
experience the typical opposing inhibitory/excitatory
response that may be observed while assessing the
habituation of VEPs in healthy participants (70).

Together, findings from magnetic and electrical neu-
romodulatory techniques applied to the sensorimotor
and visual cortices demonstrate that migraine patients
have altered physiological mechanisms of bidirectional
synaptic plasticity potentiation/depression in the short
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and long term, most likely because of altered thalamo-
cortical control.

EEG studies in migraine

Clinical application of EEG analysis in migraine dates
back to 1947 (71). Past studies have been largely incon-
sistent with regards to findings and methodologies (72).
More recently, the mainstay of EEG research in
migraine has relied on quantitative EEG (qEEG),
which uses mathematical and statistical models, such
as time and frequency analyses, analysis of connectivity
and network approaches, to study neural dynamics.
Most of the studies currently performed rely on the
spectral decomposition approach, or spectral analysis,
in which a temporal series of amplitude values are pre-
sented as a spectrogram of frequency bands, each rep-
resenting an oscillating activity.

The study of coherence is also used in EEG
investigations, being closely associated with spectral
analysis. Coherence between signal is, in fact, the
cross-power spectrum calculated as an index of the sim-
ilarity, in terms of amplitude and frequency, of two
signals, compared to level of similarity within the
entire signals in each frequency band. EEG coherence
provides an estimate of functional interactions between
neural systems operating in each frequency band, yield-
ing information about networks and integration across
brain regions (73).

The principal finding obtained between attacks in
migraineurs is represented by a diffuse slowing of back-
ground EEG activity, with reduction of the relative
power in the high frequency bands (i.e. alpha and
beta) and a simultaneous increase of low frequencies
(i.e. theta and delta) (74).

This was partially confirmed in patients with
migraine with aura, where a reduction of the beta
band has been found with respect to other transient
neurological conditions, while an increased alpha
power was found in electrodes exploring the regions
affected by the aura (75). A diffuse increase on theta
band, more pronounced in migraine with aura, was
also found in another study (76). In one study EEG
was even able to discriminate between migraine with
and without aura, finding higher theta band in patients
without aura (77).

In migraine without aura augmented alpha power is
found to be increased with respect to controls,
although this funding is significant only in limited por-
tions of the cerebral cortex, namely the right occipital
area and precuneus (78). This is interesting because in a
study on migraineurs an increased power of the lower
alpha band (8–10Hz) has been found after a visual
task. Since the lower alpha band seems to be related
to over-integration mechanisms, this could represent a

marker of a tendency towards overstimulation in
migraine (79). A recent study further confirmed a
reduction of the spectral entropy of the low beta
band encompassing fronto-parieto-occipital regions in
episodic migraine compared with controls, as well as
the presence of a high beta band which was able to
differentiate CM from EM accurately (80).

However, some studies have found no significant
changes in spectral EEG in interictal migraine, but
rather determined profound changes in coherence
between hemispheres in the beta and delta bands, sug-
gesting reduced cooperation between hemispheres in
migraineurs (81).

More recently, EEG analysis of microstates has
allowed for a better understanding of interictal dynam-
ics in migraine. Microstates are quasi-stable EEG con-
figuration with durations spanning from milliseconds
to seconds. The analysis of these rapidly fluctuating
states can provide information at high temporal reso-
lution regarding large-scale resting-state brain net-
works such as the visual, salience, and dorsal
attentional network (82). Li et al. studied the percent-
age and the transitions among microstates in migrai-
neurs, finding that migraine patients showed reduced
activity of the salience network, and by contrast an
increase in visual and dorsal attentional networks base-
line activity (83).

With increased vicinity to an attack, the EEG signal
in migraine shows a further tendency of widespread
slowing, with increase in the relative power of lower
frequency bands and a fragmentation of the symmetry
of the alpha band in occipital regions, possibly indicat-
ing thalamocortical hypoexcitability (84). One study
showed, up to 72 hours before the attack, an increase
of the delta band localized in the same site later
involved by the pain; 36 hours before the attack,
delta power was more diffuse on the fronto-central
brain regions (85). A recent study involving migraine
patients carrying a mobile EEG device providedoppo-
site results, however, highlighting a decrease of delta
power and an increase of the beta band (86). Of note,
this latter study is methodologically very different from
the others.

Broader changes have also been reported, with one
group finding that in the hours preceding an attack
several EEG measures such as power, coherence and
complexity tend to increase and ‘normalize’, becoming
more similar to that of controls (87,88). The main lim-
itation of these studies was that activity was recorded
only from a small number of electrodes. In another
study analyzing sleep, an increase of the average abso-
lute value of the cortical activity was observed preic-
tally in the brain region in which the pain would have
later occurred, compared with nights of the interictal
period (89).
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By contrast, no significant EEG changes have been
found in these same studies with regards to the postic-
tal phase, both when using spectral analysis and com-
plexity indexes (85–88).

EEG data regarding the ictal phase in migraine are
not very consistent. Different studies have reported
either increase (85) or decrease in the alpha band
(90), while others could not find ictal alterations of
the alpha, but rather determined an increase in the
asymmetry between the two hemispheres (91,92).
Most of these studies, however, are quite dated.
A more recent study investigating brain activity in the
ictal phase found an overall reduction of the alpha
power and an increase of the theta, as well as an
increase of the slow delta in the frontocentral regions,
supporting EEG slowing during migraine attacks (93).

Cortical spreading depression detection

Finally, a field in which EEG is very promising lies in
the understanding of the dynamics of cortical spread-
ing depression. One international group, in particular,
has studied the dynamics of CSD occurrence following
brain trauma (94) and ischemia (95), and recently pro-
vided direct electrophysiological evidence for spreading
depression as a pathophysiological correlate of aura
(96). This was mostly possible thanks to routine pre-
ventive craniotomy of patients, which allowed guided
EEG recordings via implementation of a cortical
electrogrid.

Recordings of CSD in aura have otherwise been dif-
ficult, with some measures showing slower activity
involving electrodes located over the hemisphere
involved by CSD (75). Recently, however, a novel
mathematical method was introduced to better detect
regions of silence on EEG, which might prove useful to
study CSD propagation in more detail (97). The major
limitation of this new method is the reliance on baseline
EEG to show significant differences, while the main
advantage is that recording of a 160 second EEG
epoch is determined sufficient to provide a result.

In conclusion, the majority of EEG studies per-
formed on migraine patients have demonstrated a
decrease in alpha rhythmic activity at rest and an exces-
sive increase during a visual task; an increase in the
power and coherence of theta (and sometimes delta)
rhythmic activity at rest in all phases of the migraine
cycle; and a decrease in beta-band oscillatory activity in
patients with aura.

There is no simple explanation for these stable
rhythmic brain changes during the phases of the
migraine cycle. It is known that theta rhythmic activity
facilitates the formation of associative memories, par-
ticularly episodic memory (98). In contrast, alpha-band
rhythmic activity is more closely associated with the

functional integrity of the thalamic pacemaker and tha-
lamocortical loops (99). A steady pattern of reduced
alpha and increased slow rhythms (theta-delta) with an
alteration of accessory metrics, such as coherence and
entropy, suggests a stable, probably genetically deter-
mined, thalamocortical dysrhythmia, which depends
on aberrant brainstem to thalamus activation that
in turn reduced cortical pre-activation (100,101).
Nonetheless, this pattern of dysrhythmic activity could
be responsible for functional alteration of cross-
frequency coupling between different areas of the
migraine brain involved in learning and plasticity pro-
cesses (102,103). This coupling between cortical areas/
networks is further compromised by aura occurrence, as
highlighted by a decrease on neural beta oscillations,
reflecting decreased global efficiency and less network
integration in response to natural environmental stimuli
(104), like light and sound.

Evoked potentials: A focus on SSEP

and VEPs

Over the past few decades evoked potentials have been
abundantly used to study the level of cortical excitabil-
ity of the migraine brain. EPs have the advantages of
offering excellent temporal resolution, of being relatively
easy to perform and of allowing analysis of different
sensory pathways within the central nervous system.
Here we focus on the most studied sensory modalities
in migraine: the visual pathway and the non-painful lem-
niscal sensory pathway, studied through the recording of
visual VEPs and SSEPs, respectively.

Visual evoked potentials

Through appropriate tuning of the stimulation paradigm
and the stimulus of VEPs, it is possible to study every
pathway and station that forms the visual system. Initial
studies in migraine examined the amplitudes of flash or
patterned VEPs, with conflicting evidence (105–112).
A few studies also focused on signalling from the inner-
most retinal layers (ganglion cells and fibres) through the
recording of pattern electroretinogram, however no
abnormalities were detected in both migraine with and
without aura (113,114). By contrast, some of these initial
studies did reveal an increased asymmetry between elec-
trophysiological responses of the two hemispheres in
migraine patients (110,112,113,115–120).

More recently, literature on neurophysiology of
migraine has largely focused on the study of the habit-
uation mechanism, defined as ‘a response decrement as
a result of repeated stimulation’ (121). The biological
behaviour of abnormal cortical information processing
and lack of habituation fits well with the aversion that
migraine patients feel towards any kind of sensory
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stimulation, both in the ictal and interictal period
(122). By using pattern-reversal VEP, most studies per-
formed in interictal episodic patients have in fact
shown deficient habituation to a stereotyped and
repeated presentation of a visual stimulus, typically a
checkerboard pattern (123–137).

Just as the pain of migraine can vary from day to day,
so this electrophysiological behaviour can fluctuate in rela-
tion to the migraine cycle. Habituation deficit raises as the
interval from last attack increases (129,138), while it nor-
malizes during the attack (124,138,139) and after successful
treatment (49,50,137,140,141). Subtle differences in VEP
responses have also been found in subgroups of migraine
with aura characterized by different clinical phenotypes
(129,142).

Further evidence of this neurophysiological alteration
is represented by the initial response amplitude of VEPs.
Although most studies have failed to detect a clear sta-
tistical significance, this value tends to be reduced in
migraine patients between attacks in comparison to
healthy subjects, while it increases during attacks
(50,101,123,134,139,143–145). This suggests that the
abnormal cortical responsivity seen interictally in
migraineurs may be due to a decreased cortical preacti-
vation level or to subcortico-cortical metaplastic hypo-
responsivity during initial stimulus repetition, rather
than a simple general cortical hyperexcitability (146).

An explanation of this dis-excitability has been attrib-
uted to abnormal thalamic control over the flow of infor-
mation reaching the cortex itself, leading to a functional
disconnection of the thalamus and thus to decreased intra-
cortical lateral inhibition (101). To investigate this, lateral
inhibition was studied with VEPs by means of different
visual stimulation paradigms, such as windmill/dartboard
alternating patterns (138) and paired visual stimulations
(147,148), confirming alterations of this cortical mecha-
nism in migraine with and without aura.

Importantly, not all authors have detected a lack of
interictal habituation studying VEPs (149–152). This is
likely due to the large number of factors that can influ-
ence the behavioral phenomenon of habituation (153),
such as: genetic factors (136), prophylactic treatments
(140,141), sunlight irradiance (126), perceived stress
(127), and visual stimulus properties, such as contrast
or temporal and spatial frequencies (109,149,154,155).

Emphasizing how the electrophysiological proper-
ties of the brain can follow the phenotypic expression
of migraine and its related syndromes, deficient VEP
habituation was also described in patients affected
by visual snow syndrome (VSS), which shares
some pathophysiological mechanisms with migraine
(156,157). Dysfunctional visual processing and cortical
hyperexcitability have been hypothesized as possible
pathophysiological mechanisms responsible for VSS
(158). Case reports and case series have described the

presence of a habituation deficit to VEPs in these
patients, regardless of the presence (159) or absence
of concomitant migraine (160,161). A broader cortical
involvement beyond the primary visual cortex was
detected in a single VSS patient by using a dual-
stimulus stimulation paradigm, which showed multiple
mechanisms of abnormal neuronal responsiveness
localized mainly in extrastriate visual regions and at
the cerebellar level (162). Interestingly, in these same
regions previous neuroimaging studies had detected
both increased metabolism (163) and grey matter
volume (164). A different group, however, did not con-
firm a habituation deficit in VSS, and rather found that
these patients are characterized by a delayed N145
latency and reduced N75–P100 amplitudes with
VEPs, supporting the idea that visual snow syndrome
is associated with disfunction of extrastriate cortical
areas (165). Overall, small sample sizes may have influ-
enced these differences in neurophysiological findings,
and more studies with standardized protocols of exam-
ination are needed in order to better elucidate the path-
ophysiology of VSS, particularly with regards to the
mechanisms it shares with migraine and aura.

Somatosensory evoked potentials

Similarly to what has been found with VEPs, several
SSEPs studies have shown that episodic migraine
patients in the pain free phase are characterized by an
altered processing of sensory information, and in par-
ticular by a lack of habituation (166–169). In addition,
patterns of habituation showed a direct link to the clin-
ical fluctuations of migraine, with the magnitude of
habituation deficit correlated with disease worsening
(169). Similarly to the visual responses, it was suggested
that habituation deficit could be explained by the lower
cortical activation level depending on abnormal tha-
lamic control (146). The reduced degree in lateral inhi-
bition within somatosensory cortex is hypothesized to
play a role in this habituation deficit (68).

Regarding baseline amplitude and latency of cortical
SSEP responses, most studies did not find differences
between interictal episodic migraineurs and healthy
volunteers (166,167,170–172). However, one study
found a significant asymmetry between the two hemi-
spheres when recording the N30 SSEP amplitudes
(172). Partially in line with the findings in VEP studies,
an initial amplitude response potentiation was
observed during the headache phase, which has been
interpreted as a neurophysiological manifestation of
central sensitization (168). More recently, the degree
of somatosensory excitation (magnitude of initial
response) and inhibition (paired-pulse paradigm) in
both the brainstem and the somatosensory cortex was
studied in two migraine women for 30 consecutive days
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(173). The authors found that the degree of brainstem
and parietal excitation was maximal, while the degree

of inhibition was minimal, 24 hours before the onset of
the headache. Of note, a recent study investigating the
effects of concomitant visual and somatosensory stim-
ulation in migraineurs between attacks suggests that
the abnormal processing in sensory information is not

limited to single modalities, but actually involves mul-
tisensory integration (174).

In summary, visual and somatosensory electrophysio-
logical responses detected the existence of a state of latent
hyper-responsiveness/lack of habituation to multimodal
sensory stimuli during the pain-free period, which change

shortly and revert to a state of transient central sensitiza-
tion during a migraine attack. The interictal latent abnor-
malities may be considered a fertile dysexcitatory ground
for the development of a new attack.

A proposed unified theory of

electrophysiological changes underlying

migraine recurrence

Since Liveing’s theoretical definition of a migraine attack
as a ‘nerve storm’ in 1873 (175), and almost eight decades

since the first in-vivo electrophysiological changes
observed in migraine patients (71), causative factors of
migraine remain largely unknown. If they exist, these
specific factors should be detectable outside of an

attack, constituting genetically determined predisposing
factors for recurrence. However, the ‘holy grail’ of genet-
ics has yet to be discovered, most likely because there is
no single migraine gene. Rather, it is believed that multi-

ple genes can predispose individuals to both clinical man-
ifestations of the disease, such as nausea/vomiting, photo
and phonophobia. In many instances, the presence of
numerous and diverse comorbidities is believed to further
lower the threshold for migraine recurrence (176).

Electrophysiological techniques have revealed the fol-
lowing characteristics of the migraine brain: 1) a general

unbalance between cortical inhibitory and excitatory
behavioural neural activity; 2) a general inability to exter-
nally modulate the cortical neural circuits of the migraine
patient in a physiological manner, both in the short and
long term; 3) an alteration of cerebral rhythms both at

rest and during a task, with a stable prevalence of slower
(theta and delta) instead of faster (alpha and beta)
rhythms; 4) a malfunction of thalamocortical rhythm
control circuits. Knowing that the synaptic circuitry of

the thalamus regulates cortical neuronal oscillations
(177), a thalamocortical dysrhythmia, due to anatomo-
functional thalamic disconnection from the brainstem
(100), may be at the base of all the characteristics of

the migraine brain mentioned above. However, most of
these alterations are non-stationary, meaning that they

vary plastically during the phases of the migraine cycle
and the interictal phase.

In conclusion, electrophysiology has demonstrated
that the migraine brain is distinguished by continuous
and recurrent plastic changes in the functional activity
of the brainstem-thalamus-cortex loop. Considering
the central role of these structures in the selection, elab-
oration, and learning of sensory information, these
functional alterations could be a sign of underlying
chronic, probably genetically determined, dysfunctions
of the synaptic short- and long-term learning mecha-
nisms, which physiologically underlie habituation and
sensitization phenomena (Figure 2) (178).

Synaptic plasticity refers to the ability of synapses to
adjust their relative strength based on the overall level of
activity or specific activity patterns, typically through
dynamic regulation of receptor-synaptic scaffold inter-
actions or trafficking. It plays a significant role in den-
dritic growth, synaptogenesis, and the formation of
neural circuits during development. Synaptic plasticity
is responsible for synapse remodelling during experience
in mature neurons. From research on neurodevelopmen-
tal and neurological disorders, such as epilepsy and
autism (179), it is well known that genetic mutations
or pathology can lead to altered excitatory or inhibitory
neurotransmission or impaired synaptogenesis, which
typically results in synaptic plasticity deficits (180).

Homeostatic and Hebbian plasticity are two major
types of activity-dependent synaptic transmission regu-
lation (181). Throughout Hebbian plasticity, synapses
respond dynamically in the same direction as the applied
stimulus. These Hebbian mechanisms result in a persis-
tent strengthening or weakening of synapses, termed
glutamatergic AMPA receptors and NMDA receptor-
dependent LTP and GABA type-A receptor-dependent
LTD, respectively. During homeostatic plasticity, how-
ever, synapses respond in the opposite direction and on
a slower timescale than the applied stimulus, compen-
sating for the shift in activity in order to preserve infor-
mation processing and network stability (182).

These dysfunctions of synaptic plasticity may alter
the normal balance between feedback and feedforward
mechanisms of interactions between subcortical and
cortical structures that are responsible for adaptation
and protection against an excessive load of sensory
stimuli. There is a need for additional research that
simultaneously investigates excitatory and inhibitory
synaptic responses under various plasticity-inducing
protocols, with a particular focus on the thalamic
level and mechanisms of thalamic-cortical crosstalk.
In addition, research should investigate whether the
malfunctioning of these fundamental learning mecha-
nisms in migraine, by reorganizing neural maps in the
downstream cortical networks, could lead to maladap-
tive changes in the interpretation of incoming sensory
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information, such as photo- and phonophobia, allo-
dynia, and visual snow. However, additional research
is required to determine whether these same mecha-
nisms can account for the structural and functional
abnormalities repeatedly detected by modern neuro-
imaging techniques in both young and adult migrai-
neurs (183).

Uncovering the mechanisms governing synaptic
plasticity will shed light on how disruptions in the
physiological balance between GABAergic and gluta-
matergic function influence the pathophysiology of
migraine disorder, identify new therapeutic targets,
and reveal the potential consequences of pharmacolog-
ically targeting these receptors.

Article highlights

• This review highlights the main electrophysiological changes in brain dynamics across the different phases
of the migraine cycle, by summarizing studies using transcranial magnetic stimulation, electroencephalog-
raphy and non-painful evoked potentials.

• Electrophysiology in migraine shows dynamic and recurrent functional alterations within the brainstem-
thalamus-cortex loop, which suggest chronic, probably genetically determined dysfunctions of the synaptic
short- and long-term learning mechanisms.
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